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Correlation of the Flux Tube Constant with the
Nucleon Electric Polarizability
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A three-quark shell model of the nucleon is used to calculate analytically the
polarizability using a scalar linear flux tube potential with no one-gluon exchange
potential included. A value of 12.02 3 1024 f 3 is obtained for the proton, in
good agreement with experiment, with the flux tube constant adjusted to reproduce
the proton D average rest energy. The magnetic polarizability of the proton is
then calculated as 1.51 3 1024 f 3, which is in agreement with the experimental
value. The neutron/proton electric polarizability ratio is calculated as 2/3, and
the neutron electric polarizability is predicted to be 8.01 3 1024 f 3.

1. INTRODUCTION

An external electric field will accelerate a nucleon and also distort the
shape of a distribution of charged quarks. The stronger the force between
the quarks, the less a given electric field will change the shape of a quark
distribution in a nucleon. The proton electric polarizability thus serves as an
experimental way of obtaining information about the strong forces acting on
quarks. Likewise, an external magnetic field will tend to distort a distribution
of quark currents, allowing the magnetic polarizability to serve as a second
way to probe the strong forces on quarks within a nucleon. The experimental
values for the proton electric [15, 18] and magnetic polarizabilities are about
12.2 3 1024 f 3 and 2.1 3 1024 f 3, respectively. The polarizabilities for the
neutron are more difficult to obtain, but there is a value [24] of (12.0 6
1.5 6 2.) 3 1024 f 3 based on neutron scattering on heavy nuclei. There is
a more recent value [17] of (0, 6 5) 1024 f 3. There is also the sum rule
result [8, 14] finding the proton minus the neutron electric polarizability is
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correlated to the proton rms charge radius, resulting in the difference being
3.8 3 1024 f 3. Chiral perturbation theories [5, 6, 8, 16, 22] based on the
photon interacting mostly with the pion clouds surrounding the nucleon find
a neutron/proton polarizability ratio of 1:1 in agreement with data on neutron
scattering on heavy nuclei. Using the experimental electric polarizability for
the proton with the sum rule estimates a neutron electric polarizability of
about 2/3 that of the proton. Assuming the photons interact mainly with the
quarks in a nucleon results in a neutron/proton electric polarizability ratio of
the same 2/3 value. That motivates this paper to determine the polarizability
of the proton using a three-quark model for the nucleon.

In a relativistic three-quark model, the charge and spin of the proton
are modeled by assigning appropriate charges to the assumed three-quark
constituents and assigning them to a (1/2+)3 configuration coupled to a total
angular momentum of one half. The configuration is labeled by the upper
component quantum numbers for each quark. The three-body Dirac equation
is used to describe the dynamics of the bound system and to determine the
composite three-quark wave function. The lower component of the Dirac
wave function for a bound quark, neglected in nonrelativistic constituent
quark approaches, is needed to determine the magnetic polarizability. The
quark masses in the nucleon will be assumed small.

Semay and Ceuleneer [25] used a linear scalar diagonal confinement
potential in the same particle–antiparticle two-body system, obtaining abso-
lutely confined states in describing mesons as two-quark systems. A flux
tube potential proportional to the minimum length of a Y-shaped tube connect-
ing the three quarks for any given quark locations has been used in three-
valence-quark studies of the nucleon [10]. This is a three-body potential as
the potential energy depends on the simultaneous location of each of the
three quarks. Here a linear scalar potential

S 5 b(b1r1 1 b2r2 1 b3r3) (1)

is used. The flux tube constant is b. Here b is the Dirac matrix and the
subscripts are particle labels. A three-body Dirac shell model is used with
this scalar linear flux tube potential and massless quarks to estimate the
electric and magnetic polarizabilities of the nucleon. Approximate solutions
are found that are simple analytic functions(Gaussians) for use in determining
the nucleon polarizabilities. Similiar assumptions are used with the three-
body Dirac equation to obtain the nucleon rest energy using this scalar linear
flux tube potential model.

The program of perturbative calculations needed to obtain the polariz-
ability is to solve the unperturbed Hamiltonian H0 for the ground-state energy
E0 and for the unperturbed wave function C0. Then one introduces as a
perturbation H 8 the interaction of the quarks with an external electric or
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magnetic field, each separately assumed in turn to be in the z direction.
Then one obtains the second-order correction to the eigenvalue W2 and the
polarization is defined as the coefficient of the squared electric field strength
for the electric polarizability and as a coefficient of the squared magnetic
field strength for the magnetic polarizability.

Following Schiff [23], one can determine the second-order correction
to the eigenvalue in one of two ways. The first is to determine the excited-
state wave functions and energies of all the states with overlap to the ground
state through the electric or magnetic perturbation. Then the squares of the
perturbation matrix element between the ground state and each excited state
divided by the excitation energy, summed over the excited states, leads to
the second-order perturbation to the energy. An alternative way is to solve
for the first-order correction to the wave function by solving

[H0 2 W0]C1 5 [W1 2 H 8]C0 (2)

where W1 is the first-order correction to the eigenvalue. W1 vanishes for the
external electric field perturbation due to parity considerations. In the three-
quark model used here for the nucleon, the perturbative interaction is

H 8 5 o
i

qiri cos(ui)Ez (3)

where Ez is the external electric field and qi is the charge of the ith quark,
located at

›
r i. The sum over i denotes the contributions from each of the three

quarks. The external magnetic field interaction is

H 8 5 2o
i

qi c
›
r i ^

›
a i ?

›
B z (4)

where ai is the Dirac alpha matrix for the ith quark. The first-order correction
to the energy W1 is not zero for the magnetic perturbation. Once the first-
order correction to the wave function has been determined, then the second-
order correction to the energy can be found from

W2 5 ^C1H 8C0& (5)

This latter method is the one followed here. The three-quark Dirac equation
is solved approximately here to obtain simple wave functions for the bound
current quarks. A three-quark shell model is then used to describe the nucleon.
This approach allows the first-order correction to the quark wave function to
be determined analytically as well as the second-order correction to the energy.
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2. DETERMINING THE PROTON ELECTRIC
POLARIZABILITY

The electric perturbation is

H 8 5 o
i

qiri cos(ui)Ez (6)

where Ez is the external electric field. The sum is over the three quarks
assumed in the nucleon. One term at a time of this perturbation is considered.
Each term of the perturbation has the same contribution to W2, scaled only
by the squared quark charge, q2

i .
With a shell model wave function for the three quarks in the (1/2+)3

configuration for the proton, the one-body Dirac Hamiltonian is

H1body 5
›

a ?
›

p 1 bbr (7)

One would like to solve,

[H1body 1 H 8]C 5 EC (8)

where E is now the energy in the presence of the above perturbation and
H1body is the one-quark Hamiltonian. Even in perturbation theory one has
large coupled off-diagonal terms to deal with when solving for the first-order
correction to the wave function.

The first-order correction to the wave function is calculated using the
square of the one-body Hamiltonian. The idea is to follow Abe and Fujita
[1] and to operate twice with the Hamiltonian on the ground-state wave
function. We let H0 5 H2

1body and W0 5 E 2
0, and include the off-diagonal

terms to first order only. Dropping the ith subscript from the perturbation
summation, we have

H0 5 p2 1 b2r 2 1 ibbar (9)

Here a and b are the Dirac matrices, and ar 5
›

a ? r̂. One now solves

H0C0 5 W0C0 (10)

After integrating over angles and spin coordinates, one finds the upper
and lower uncoupled eigenfunctions by considering the diagonal elements
only of H0. These eigenfunctions are normalized harmonic oscillator eigen-
functions Fu and Gu , respectively. The corresponding eigenvalues are (L 1
3/2)2b, where L is the orbital angular momentum of a given component. We
define the usual Dirac constant

k 5 6(J 1 1/2) (11)

The off-diagonal terms are included to first order by considering
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FHk 2 W0 b
b Hk21 2 W0

GFF0

G0
G 5 0 (12)

Here Hk is given by

Hk 5 2r 22 d/dr [r 2 d/dr] 1 b2r 2 1 k(k 1 1)/r 2 (13)

The unperturbed wave functions are component coefficients times the uncou-
pled solution, and F0 5 AFu and G0 5 BGu. The component coefficients and
the eigenvalue W0 are determined from

F3b 2 W0 b12

b12 5b 2 W0
GFA

BG 5 0 (14)

where

b12 5 b[8/3p]1/2 (15)

The results are A2 5 0.8677, B2 5 0.1323, and

W0/b 5 4 2 [1 1 (8/3p)]1/2 5 2.6403 (16)

compared to Critchfield’s [11] exact result 2.6226. The diagonal terms of
H0, 3b, and 5b are larger than the off-diagonal term b12. This is the advantage
of calculating with the squared Hamiltonian compared to the linear Hamilto-
nian. The unperturbed wave functions are F0 and G0, each with a simple
Gaussian, or r times a Gaussian form, with known coefficients, which will
be used to determine the polarizabilities.

The calculation of the first-order correction to the wave function is then
done with these wave functions. Consider

[H0]C 5 [E 2 H 8]2C (17)

With perturbation theory, the eigenvalue term becomes

[E 2 H 8]2 5 E 2
0 2 2E0H 8 1 H82 (18)

and we neglect the last term. Following second-order perturbation theory
[23], we now consider

[H0 2 W0]C1 5 22E0qr cos(u)EzC0 (19)

This is solved including only the diagonal terms of H0. It is useful to define

H9 5 2E0 H 8 (20)

To determine the first-order correction to the wave function C1, we have to
expand the inhomogenous angular part of Eq. (19) as
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cos(u) Y 2
1/2m 5 A1/2Y 1

1/2m 1 A3/2Y 2
3/2m (21)

and

cos(u) Y 1
1/2m 5 B1/2Y 2

1/2m 1 B3/2Y 1
3/2m (22)

Here Y6
jm are the joint eigenfunctions of quark orbital and intrinsic angular

momentum coupled to a total angular momentum j, z component m, with
parity 6 specified by the superscript v. Parity is (21)( j1v/2). Each term of
the inhomogenous part is separately solved for in determining C1. The angular
part of C1 is chosen to match the particular inhomogenous term being consid-
ered. The radial part, R1, of this piece of the first-order corrected wave
function is then found by taking the radial part as

R1 5 exp(2br 2/2) ( Pnr n (23)

Substituting this expansion into the left-hand side of Eq. (19) results [with
Eq. (13)] in algebraic equations that can be solved for the polynomial coeffi-
cients Pn. For each piece of the first-order corrected wave function, only one
or two polynomial coefficients are different from zero. Then the contributions
are added together, and W2 is found by

W2 5 ^C1.H 9.C0& (24)

Since H 9 is 2E0H 8, the electric polarizability a is found from

2(1/2)a E 2
z2E0 5 W2 (25)

The electric polarizability for the proton is shown in Fig. 1 versus the flux
tube constant b. The neutron polarizability is 2/3 the proton polarizability,
since each is proportional to the sum of the squared quark charges contained
in each nucleon.

3. DETERMINING THE PROTON MAGNETIC
POLARIZABILITY

The magnetic polarizability calculation proceeds along the same lines
as in the above section except that the first-order correction to the energy
W1 is not zero. The interaction for each quark is

H 8 5 2m ?
›

B 5 2qc
›
r ^

›
a ?

›
B (26)

Assuming the magnetic field Bz is in the z direction only, we obtain for the
first-order correction to the energy

W1 5 qcBz(2/3)AB #
`

0

FurGur 2 dr (27)

Now, in Eq. (2) we expand the inhomogenous terms of [W12E0 2 2E0 H 8]C0
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Fig. 1. Proton electric polarizability versus flux tube constant with massless quarks (upper
curve). The units are 1024 f 3. The proton magnetic polarizability is the lower curve.

as coefficients times each of numerous j, parity inhomogenous term angular,
spin eigenfunctions Y 6

jm. The contribution of each inhomogenous term to C1

is then determined, neglecting the off-diagonal b terms to H0, as in the prior
section. With

H 9 5 22E0 o
i

qi c
›
r i ^

›
a i ?

›
B (28)

one then finds

W2 5 ^C1.H 9.C0& (29)

The magnetic polarizability b is then found from

2(1/2)bB2
z2E0 5 W2 (30)

The magnetic polarizability can be seen in Fig. 1 as the lower curve, in units
of 1024 f 3.
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4. THEORY FOR THE THREE-QUARK WAVE FUNCTION OF
THE NUCLEON

The three-body Dirac equation is solved in hypercentral approximation,
using hyperspherical coordinates. The six space coordinates necessary to
specify the location of the particles are taken as a hyperradius r and five
hyperangles V . The root mean square hyperradius value is somewhat akin
to the classical concept of the radius of gyration. The hyperradius is defined as

r2 5 (r 2
12 1 r 2

23 1 r 2
31)/3 5 r 2

1 1 r 2
2 1 r 2

3 2 3R2 (31)

where r1, r2, and r3 are the locations of the three particles, respectively, and
R is the location of the center of mass. r12 is the separation of particles 1
and 2, etc. The details of the hyperspherical approach can be found in ref.
19. This method as applied to the many-body Schrödinger equation has been
summarized by Baz and Zhukov [4] and Ripelle [21, 3]. The hypercentral
approximation utilizes the hyperangular average of the (i,j Vij potential
terms. The hyperangular reduction of these equations has been reported
elsewhere [26–29].

The three-fermion composite wave function C is written as

C 5 ( U(V)R(r) (32)

where the sum is over the various configurations. In general, the sum over
configurations is eventually truncated by a multibody angular momentum
barrier that favors small orbital angular momentum configurations for short-
ranged forces. The hypercentral approximation truncates this sum to that of
a single configuration, the (1/2+)3. U(V) is a product of the orbital, spin,
flavor, and color parts of the wave function for each of the particles, and
includes the angular momentum coupling. V denotes the hyperangles and
the other spin, flavor, and color coordinates of the system. The angular
momentum coupling is [j1, j2]J12, j3 JMz&, where j1, j2, and j3 are the total
angular momenta of each of the three particles, and J12 is the intermediate
coupling of the first pair. The total angular momentum of the third particle
is coupled to J12 to produce J, the total angular momentum of the three-body
system, and its z component Mz. Sums over the m values are understood.
For the nucleon, J is one half, and J12 can be only zero or one for the
configurations considered here. Doing the hyperangular integration results
in the three-body Dirac equation becoming a set of coupled differential
equations involving derivatives with respect to the hyperradius. An eight by
eight matrix is obtained for the Hamiltonian which operates on the composite
three-body wave function involving products of the upper and lower compo-
nents for each single-particle wave function. The unknown hyperradial depen-
dence is symmetric upon exchange of any pair of coordinates.
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The factors that make up the U(V) part of the composite wave function
are now expressed in detail. The color singlet part of the composite wave
function of three quarks can be written as a factor

ccolor 5 det(abc)/!6 (33)

where a, b, and c denote the three color indices of the quarks. This determinant
is totally antisymmetric upon exchange of color indices. The rest of the
composite wave function must therefore be totally symmetric upon exchange
of coordinates. The composite wave function can be rewritten as

C 5 ccolorcfccspace (34)

The flavor and angular momentum coupling part can be expressed as

cfc 5 (xs[j1, j2]1, j3 JMz& 1 xA[j1, j2]0, j3 JMz&)/!2 (35)

Here the flavor part consists of only u or d components, the symmetric part
upon exchange of the first pair being

xs 5 [duu 1 udu 2 2uud]/!6 (36)

and the antisymmetric part upon exchange of the first pair being

xA 5 [udu 2 duu]/!2 (37)

The combined symmetry of the flavor angular momentum coupling part is
maintained by the angular momentum coupling factors having the same
symmetry as the corresponding flavor part. J12 is 1 for the symmetric flavor
part and 0 for the antisymmetric flavor part.

The composite three-body wave function is an eight-component column
vector with unknown hyperradial dependence to be determined. The color,
flavor, angular momentum coupling, and the orbital factors of the composite
wave function are all collected into the factor U(V). The space part of the
composite three-quark wave function is determined from the three-body
Dirac equation.

5. CORRELATION OF THE FLUX TUBE CONSTANT TO THE
NUCLEON REST ENERGY

In the two-component notation, the square of the Dirac Hamiltonian is
more nearly diagonal than is the linear Dirac Hamiltonian. After squaring,
the only off-diagonal terms involve the commutator of the kinetic energy
and the potential terms. The quark potential is taken as a scalar

S 5 b(b1r1 1 b2r2 1 b3r3) (38)

where the subscripts denote the particle label; then the off-diagonal terms of



2862 Strobel

the squared Hamiltonian are constants. In the overall rest frame of the system,
where the total momentum vanishes, using hyperspherical coordinates, one
obtains

F2¹2 1 b2r2 1 in1oj
bjajr2GC0 5 W0C0 (39)

where W0 5 E 2
0 and n 5 2b/3. The zero subscript implies no external electro-

magnetic interaction is included in the unperturbed system. If the squared
Hamiltonian problem were solved exactly, the eigenfunction would be the
same as for the linear Hamiltonian problem.

This squared Hamiltonian eigenvalue problem is solved to estimate
appropiate values for the flux tube constant b in a massless quark model
with no short-ranged one-gluon exchange potential included. In the Dirac
two-component notation, the composite three-quark wave function can be
written as an eight-component column vector. In the hypercentral approxima-
tion that includes only the (1/2+)3 configuration there exist symmetry relations
between these components that reduce the number of unknowns to four [27].
After integrating over the color, flavor, spin, and hyperangular parts of the
wave function, the ¹2R(r)UK(V) goes to

^UK(V)¹2RK(r)UK(V)& 5 r25 d/dr [r5 dRK /dr] 2 K(K 1 4)RK /r2 (40)

Including only the diagonal terms, the eigenfunctions are those of the
harmonic oscillator:

RK(r) 5 NK rK exp(2br2/2) (41)

with the eigenvalue (2K 1 6)b. This eigenvalue is an energy squared, as b
has the units of GeV2. NK is the normalization constant for the uncoupled
components. K has the value zero for the component that survives in the
nonrelativistic limit and increases by one for each lower quark component
in the composite three-quark wave function. K ranges from zero to three for
the various components of the (1/2+)3 assumed configuration for the nucleon.
The off-diagonal terms are included to first order only, so that the components
of the column eigenfunction are coupled, but the shape of each component
is unchanged. The components of the wave function pick up an additional
coefficient AK , where now

RK(r) 5 AKNKrK exp(2br2/2) (42)

The coefficients and the eigenvalue W are determined from the determinant
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3
6b 2 W 3n 0 0

n 8b 2 W 2n 0
0 2n 10b 2 W n
0 0 3n 12b 2 W

43
A0

A1

A2

A3
4 5 0 (43)

The normalization condition for the coupling coefficients can be written as

1 5 A2
0 1 3A2

1 1 3A2
2 1 A2

3 (44)

due to the symmetry relations reducing the eight-component equation to a
four-component equation. This has the solution

W/b 5 5.3944 (45)

Critchfield [11] exactly solved the one-body massless Dirac equation with a
scalar linear potential and found

Wonebody /b 5 2.6226 (46)

Comparing these two results, we see Abe and Fujita’s [1] conclusion
that the three-body squared energy would be twice the one-body squared
energy is quite accurate since 5.39 is almost twice 2.62. If b is chosen to be
0.1632 GeV2, then W1/2, the nucleon rest energy, would be reproduced by
this scalar string potential, massless quark model for the proton. In the absence
of a one-gluon exchange potential or other mechanism to split the D rest
energy from the nucleon rest energy, perhaps the flux tube constant should
reproduce their average rest energy, 1.087 GeV, in which case b 5 0.2190
GeV2. The axial charge of the proton with this wave function is 1.478,
compared to the experimental value of 1.26. This shows the approximate
solution needs more contribution to the norm from the lower components of
the composite three-quark wave function. The rms charge radius of this
approximate wave function is 0.5087 fermi, less than the experimental value
of 0.83.

6. CONCLUSIONS

Proton electric and magnetic polarizabilities reported here depend on
the flux tube constant. A scalar flux tube potential has been used with massless
quarks to determine the unperturbed quark wave functions in the nucleon.
In the model with massless quarks, a scalar flux tube confining potential,
and no one-gluon exchange potential, the nucleon rest energy is proportional
to b1/2 and the electric polarizability is approximately proportional to 1/b.

The polarizabilities are calculated in second-order perturbation theory.
Three values for the flux tube constant are considered. One matches the
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Table I. Nucleon Polarizabilities Versus the Flux Tube Constant

b aP bP aP 2 aN

(GeV 2) (1024 f 3) (1024 f 3) (1024 f 3) Comment

0.1632 18.75 2.373 6.25 Proton energy fit (1)
0.18 16.14 2.031 5.38 Meson spectra Studies
0.219 12.02 1.513 4.01 D nucleon mass average

proton rest energy, one matches meson spectra [7], and one matches the D
proton average rest energy. The neutron/proton electric polarizability ratio is
2/3 in this three-valence-quark model of the nucleon. The neutron/proton
magnetic polarizabilities are also in the ratio of 2/3. This is in contrast to
chiral perturbation theories, where these ratios are 1:1. Sum rule analyses [8,
14] suggest that electric polarizability of the proton minus that for the neutron
has the value of 3.8 3 1024 f 3. Experiments for the proton electric polarizabil-
ity [15, 18] report (12.1 6 0.8 6 0.5) 3 l024 f 3 and for the proton magnetic
polarizability (2.1 7 0.8 7 0.5) 3 1024 f 3, where the reversal of signs indicates
that Baldwin’s [2] sum rule was used as a constraint. The experimental values
for the neutron electric polarizability are difficult, but reported values are
[24] (12.0 6 1.5 6 2.0) 3 1024 f 3 from neutron scattering off heavy nuclei,
and more recently [17] (0 6 5) 3 1024 f 3.

The polarizations as a function of flux tube constant are given in Table
I. The values for the flux tube constant are similiar to those used in various
constituent quark analyses [9, 12, 13, 18, 20]. Best agreement with experiment
is for the flux tube constant to match the average of the D nucleon rest
energies. The neutron electric polarizability is predicted to be 8.01 3 1024

f 3 for a flux tube constant of 0.219 GeV2. The neutron electric polarizability
experiments are difficult, but more precise values are needed. Such experi-
ments would sharply discriminate between the chiral perturbation and the
current quark mass model predictions.
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